
Implementing zFilter based forwarding node on a NetFPGA

Jari Keinänen, Petri Jokela, Kristian Slavov
Ericsson Research, NomadicLab

02420 Jorvas, Finland
firstname.secondname@ericsson.com

ABSTRACT
Our previous work has produced a novel, Bloom-filter based,
forwarding fabric, suitable for large-scale topic-based pub-
lish/subscribe [8]. Due to very simple forwarding decisions
and small forwarding tables, the fabric may be more effi-
cient than the currently used ones. In this paper, we de-
scribe the NetFPGA based forwarding node implementation
for this new, IP-less, forwarding fabric. The implementation
requires removing the traditional IP forwarding implemen-
tation, and replacing it with the Bloom-filter matching tech-
niques for making the forwarding decisions. To complete
the work, we provide measurement results to verify the for-
warding efficiency of the proposed forwarding system and
we compare these results to the measurements from the orig-
inal, IP-based forwarding, implementation.

1. INTRODUCTION
While network-level IP multicast was proposed al-

most two decades ago [5], its success has been limited
due to the lack of wide scale deployment. As a con-
sequence, various forms of application-level multicast
have gained in popularity, but their scalability and effi-
ciency have been limited. Hence, a challenge is how to
build a multicast infrastructure that can scale to, and
tolerate the failure modes of, the general Internet, while
achieving low latency and efficient use of resources.

In [8], we propose a novel multicast forwarding fab-
ric. The mechanism is based on identifying links in-
stead of nodes and uses in-packet Bloom filters [2] to
encode source-route-style forwarding information in the
packet header. The forwarding decisions are simple and
the forwarding tables fairly small, potentially allow-
ing faster, smaller, and more energy-efficient switches
than what today’s switches are. The proposed (inter-
)networking model aims towards balancing the state be-
tween the packet headers and the network nodes, allow-
ing both stateless and stateful operations [16].

The presented method takes advantage of ”inverting”
the Bloom filter thinking [3]. Instead of maintaining
Bloom filters at the network nodes and verifying from
incoming packets if they are included in the filter or
not, we put the Bloom filters themselves in the packets

and allow the nodes on the path to determine which
outgoing links the packet should be forwarded to.

In this paper, we present the implementation of a
forwarding node on a NetFPGA. At the first stage, we
have implemented the basic forwarding node functions
enabling packet delivery through the network using the
described forwarding mechanism. At the same time we
have been developing a FreeBSD-based end-host imple-
mentation, based on publish/subscribe networking ar-
chitecture, described in [8]. The end-host implements
the packet management, as well as networking related
functions. The present environment supports only sim-
ple networks, but once the first release of the end-host
implementation is ready, larger scale networks can be
created and tested.

We selected NetFPGA as the forwarding node plat-
form because it offers a fast way to develop custom
routers. It provides a way easy to move implementa-
tions directly on hardware by taking advantage of repro-
grammable FPGA circuits enabling prototype imple-
mentations that can handle high speed data transmis-
sion (1Gbps/link). We can also avoid time consuming
and expensive process of designing new physical hard-
ware components.

The rest of this paper is organized as follows. First,
in Section 2, we discuss the general concepts and archi-
tecture of our solution. In Section 3, we go into details
of the implementation. Next, in Section 4, we provide
some evaluation and analysis of our forwarding fabric
Section 5 contrasts our work with related work, and
Section 6 concludes the paper.

2. ARCHITECTURE
Our main focus in this paper is on describing the for-

warding node implementation of the Bloom-filter based
forwarding mechanism referred to as zFilters. In this
section, we describe the basic zFilter operations, and
for more detailed description, we refer to [8].

2.1 Forwarding on Bloomed link identifiers
The forwarding mechanism described in this paper

1

is based on identifying links instead of nodes. In the
basic operation, the forwarding nodes do not need to
maintain any state other than a Link ID per interface.
The forwarding information is constructed using these
Link IDs and including them in the packet header in
a Bloom filter fashion. For better scalability, we in-
troduce an enhancement that inserts a small amount
of state in the network by creating virtual trees in the
network and identifying them using similar identifiers as
the Link IDs. In this section we describe the basics of
such forwarding system, and more detailed information
can be found from [8].

2.1.1 The basic Bloom-filter-based forwarding

For each point-to-point link, we assign two identifiers,
called Link IDs, one in each direction. For example, a
link between the nodes A and B has two identifiers,
−−→
AB and

←−−
AB. In the case of a multi-point link, such

as a wireless link, we consider each pair of nodes as a
separate link. With this setup, we don’t need any com-
mon agreement between the nodes on the link identities
– each link identity may be locally assigned, as long as
the probability of duplicates is low enough.

Basically, a Link ID is an m-bit long name with just
k bits set to one. In [8] we discuss the proper values for
m and k, and what are the consequences if we change
the values; however, for now it is sufficient to note that
typically k ≪ m and m is relatively large, making the
Link IDs statistically unique (e.g., with m = 248, k = 5,
of Link IDs ≈ m!/(m− k)! ≈ 9 ∗ 1011).

The complete architecture includes a management
system that creates a graph of the network using Link
IDs and connectivity information, without any depen-
dency on end-point naming or addressing (creating the
“topology map” or “routing table”). Using the network
graph, the topology system can determine a forwarding
tree for any publication, from the locations of the pub-
lisher and subscribers [16]. In this paper, however, we
assume that such topology management exists and refer
to [8] for more detailed discussion about the complete
architecture.

When the topology system gets a request to deter-
mine a forwarding tree for a certain publication, it first
creates a conceptual delivery tree for the publication
using the network graph. Once it has such an inter-
nal representation of the tree, it knows which links the
packets need to pass, and it can determine when to use
Bloom filters and when to create state. [16]

In the default case, we use a source-routing based ap-
proach which makes forwarding independent from rout-
ing. Basically, we encode all Link IDs of the delivery
tree into a Bloom filter, forming the forwarding zFil-
ter for the data. Once all Link IDs have been added
to the filter, a mapping from the data topic identifier
to the zFilter is given to the node acting as the data

Figure 1: Example of Link IDs assigned for links,

as well as a publication with a zFilter, built for

forwarding the packet from the Publisher to the

Subscriber.

Figure 2: An example relation of one Link ID to

the d LITs, using k hashes on the Link ID.

source, which now can create packets that will be de-
livered along the tree.

Each forwarding node acts on packets roughly as fol-
lows. For each link, the outgoing Link ID is ANDed
with the zFilter found in the packet. If the result matches
with the Link ID, it is assumed that the Link ID has
been added to the zFilter and that the packet needs to
be forwarded along that link.

With Bloom filters, matching may result with some
false positives. In such a case, the packet is forwarded
along a link that was not added to the zFilter, causing
extra traffic. While the ratio of false positives depends
on the number of entries added to the filter, we get a
practical limit on how many link names can be included
into a single zFilter.

Our approach to the Bloom filter capacity limit is
twofold: Firstly, we use recursive layering [4] to divide
the network into suitably-sized components and sec-
ondly, the topology system may dynamically add virtual
links to the system (see Section 2.2.1).

2

Figure 3: Outgoing interfaces are equipped with

d forwarding tables, indexed by the value in the

incoming packet.

2.1.2 Link IDs and LITs

To reduce the number of false positives, we intro-
duced [8] Link ID Tags (LITs), as an addition to the
plain Link IDs. The idea is that instead of each link
being identified with a single Link ID, every unidirec-
tional link is associated with a set of d distinct LITs
(Fig. 2). This allows us to construct zFilters that can be
optimized, e.g., in terms of the false positive rate, com-
pliance with network policies, or multi path selection.
The approach allows us to construct different candidate
zFilters and to to select the best-performing Bloom fil-
ter from the candidates, according to any appropriate
metric.

The forwarding information is stored in the form of
d forwarding tables, each containing the LIT entries of
the active Link IDs, as depicted in Fig. 3. The only
modification of the base forwarding method is that the
node needs to be able to determine which forwarding
table it should perform the matching operations; for
this, we include the index in the packet header before
zFilter.

The construction of the forwarding Bloom filter is
similar to the one discussed in single Link ID case, ex-
cept that for the selected path from the publisher to the
subscriber, we calculate d candidate filters, one using
each of the d values, which are each equivalent repre-
sentations of the delivery tree.

As a consequence, having d different candidates each
representing the given delivery tree is a way to minimise
the number of false forwardings in the network, as well
as restricting these events to places where their negative
effects are smallest. [8]

2.2 Stateful operations
In the previous, we presented the basic, single link,

based forwarding solution. A forwarding node does not
maintain any connection or tree based states, the only

information that it has to maintain is the outgoing Link
IDs. In this section, we discuss some issues that enhance
the operation with the cost of adding small amount of
state on the forwarding nodes.

2.2.1 Virtual links

As discussed in [8], the forwarding system in its basic
form, is scalable into metropolitan area networks with
sparse multicast trees. However, in case of dense mul-
ticast trees and larger networks, increasing the number
of Link IDs in the Bloom filter will increase the number
of false positives on the path. For more efficient oper-
ations, the topology layer can identify different kinds
of delivery trees in the network and assign them virtual
Link IDs that look similar to Link IDs described earlier.

Once a virtual link has been created, each participat-
ing router is configured with the newly created virtual
Link ID information, adding a small amount of state
in its forwarding table. The virtual link identifier can
then be used to replace all the single Link IDs needed
to form the delivery tree, when creating zFilters.

2.2.2 Link failures - fast recovery

All source routing based forwarding mechanisms are
vulnerable when link failures occur in the network. While
the packet header contains the exact route, the packets
will not be re-routed using other paths.

In zFilters [8], we have proposed two simple solu-
tions for this mentioned problem: we can use either
pre-configured virtual links, having the same Link ID
as the path which it is replacing or then we can use
pre-computed zFilters, bypassing the broken link. The
former method requires an additional signalling mes-
sage so that the alternative path is activated, but the
data packets can still use the same zFilter and do not
need any modifications. The latter solutions requires
that the alternative path is added to the zFilter in the
packet header, thus increasing the fill factor of the zFil-
ter, increasing the probability of false positives. How-
ever, the solution does not require any signalling when
the new path is needed.

2.2.3 Loop prevention

The possibility for false positives means that there is
a risk for loops in the network. The loop avoidance has
also been discussed in [8] with some initial mechanisms
for avoiding such loops. Locally, it is possible to cal-
culate zFilter that do not contain loops, but when the
packet is passed to another administrative domain, it
is not necessarily possible. One other alternative is to
use TTL-like field in the packet for removing looping
packets. Work is going on in this area.

3

2.3 Control messages, slow path, and services
To inject packets to the slow path on forwarding nodes,

each node can be equipped with a local, unique Link ID
denoting the node-internal passway from the switching
fabric to the control processor. That allows targeted
control messages that are passed only to one or a few
nodes. Additionally, there may a be virtual Link ID at-
tached to these node-local passways, making it possible
to multicast control messages to a number of forwarding
nodes without needing to explicitly name each of them.

By default such control messages would be simulta-
neously passed to the slow path and forwarded to the
neighboring nodes. The simultaneous forwarding can be
blocked easily, either by using zFilters constructed for
node-to-node communication, or using a virtual Link
ID that is both configured to pass messages to the slow
path and to block them at all the outgoing links.

Generalising, we make the observation that the egress
points of a virtual link can be basically anything: nodes,
processor cards within nodes, or even specific services.
This allows our approach to be extended to upper lay-
ers, beyond forwarding, if so desired.

3. IMPLEMENTATION
In the project, we have designed a publish/subscribe

based networking architecture with a novel forwarding
mechanism. The motivation to choose NetFPGA as
the platform for our forwarding node implementation
was based on our requirements. We needed a platform
that was capable for high data rates and has the flexi-
bility that allows implementation of a completely new
forwarding functionality.

The current implementation has roughly 500 lines of
Verilog code, and it implements most of the functions
described in the previous section. In this section, we
will go deeper in the implementation and describe what
changes we have made to the original reference imple-
mentation.

3.1 Basic forwarding method

Algorithm 1: Forwarding method of LIPSIN

Input: Link IDs of the outgoing links; zFilter in
the packet header

foreach Link ID of outgoing interface do

if zFilter & Link ID == Link ID then
Forward packet on the link

end

end

The core operation of our forwarding node is to make
the forwarding decision for incoming packets. With
zFilters, the decision is based on a binary AND and
comparison operations, both of which are very simple
to implement in hardware. The forwarding decision

Figure 4: Reference and modified datapaths

(Alg. 1) can be easily parallelized, as there are no mem-
ory or other shared resource bottlenecks. The rest of
this section describes the implementation based on this
simple forwarding operation.

3.2 Forwarding node
For the implementation work we identified all unnec-

essary parts from the reference switch implementation
and removed most of the code that is not required in
our system (Figure 4). The removed parts were replaced
with a simple zFilter switch.

The current version implements both the LIT and the
virtual link extensions, and it has been tested with four
real and four virtual LITs per each of the four interface.
We are using our own EtherType for identifying zFilter
packets. The implementation drops incoming packets
with wrong ethertype, invalid zFilter, or if the TTL
value has decreased down to zero.

The output port lookup module and all modules re-
lated to that are removed from the reference switch
design. The zFilter implementation is not using any
functions from those modules.

Our prototype has been implemented mainly in the
new output port selector module. This module is re-
sponsible for the zFilter matching operations, including
binary AND operation between the LIT and zFilter,
and comparing the result with the LIT, as well as plac-
ing the packets to the correct output queues based on
the matching result. The new module is added in out-
put queueus. Detailed structure of the output port selector
module is shown in Figure 5.

3.2.1 Packet forwarding operations

All incoming data is forwarded, straight from the in-
put arbiter, to the store packet module, that stores it
into the SRAM and to the output port selector mod-

4

Figure 5: Structure of the output port selector

module

ule for processing. Packets arrive in 64-bit pieces, one
piece on each clock cycle. The packet handling starts
with initiating processing for different verifications on
the packet as well as on the actual zFilter matching
operation.

The incoming packet processing takes place in vari-
ous functions, where different kinds of verifications are
performed to the packet. The three parallelized ver-
ification operations, bit counter, ethertype, and TTL,
make sanity checks on the packet, while the do zFil-
tering makes the actual forwarding decisions. In prac-
tice, for enabling parallelization, there exists separate
instances of logic blocks that do zFiltering, one for each
of the Link IDs (both for ordinary and virtual links).
In the following, we go through the functions in Figure
5 function-by-function and in Figure 6, the operations
are shown in function of clock cycles.

In do zFiltering, we make the actual zFilter matching
for each 64-bit chunk. First, we select the correct LITs
of each of the interfaces based on the d-value in the
incoming zFilter. For maintaining the forwarding deci-
sion status for each of the interfaces during the match-
ing process, we have a bit-vector where each of the in-
terfaces has a single bit assigned, indicating the final
forwarding decision. Prior to matching process, all the
bits are set to one. During the zFilter matching, when
the system notices that there is a mismatch in the com-
parison between the AND-operation result and the LIT,
the corresponding interface’s bit in the bit-vector is set
to zero.

Finally, when the whole zFilter has been matched
with the corresponding LITs, we know the interfaces
where the packet should be forwarded by checking from
the bit-vector, which of the bits are still ones. While

the forwarding decision is also based on the other veri-
fications on the packet, the combine results collects the
information from the three verification functions in ad-
dition to the zFilter matching results. If all the collected
verification function results indicate positive forwarding
decision, the packet will be put to all outgoing queues
indicated by the bit vector. The detailed operations of
the verification functions are described in 3.2.2.

3.2.2 Support blocks and operations

To avoid the obvious attack of setting all bits to one
in the zFilter, and delivering the packet to all possi-
ble nodes in the network, we have implemented a very
simple verification on the zFilter. We have limited the
maximum number of bits set to one in a zFilter to a con-
stant value, which is configurable from the user space;
if there are more bits set to one than the set maximum
value, the packet is dropped. The bit counting function
calculates the number of ones in a single zFilter and it
is implemented in the bit counter module. This module
takes 64 bits wide input and it returns the amount of
ones on the given input. Only wires and logic elements
are used to calculate the result and there are no regis-
ters inside, meaning that block initiating the operation
should take care of the needed synchronization.

The Ethertype of the packet is checked upon arrival.
At the moment, we are using 0xacdc as the ethertype,
identifying the zFilter-based packets. However, in a
pure zFilter based network, the ethernet is not neces-
sarily needed, thus this operation will be obsolete. The
third packet checking operation is the verification of
the TTL. This is used in the current implementation
to avoid loops in the network. This is not an optimal
solution for loop prevention, and better solutions are
currently being worked on.

The id store module implements Dual-Port RAM func-
tionality making it possible for two processes to access
it simultaneously. This allows modifications to LIT:s
without blocking forwarding functionality. The id store
module is written so that it can be synthesized by us-
ing either logic cells or BRAM (Block RAM). One of the
ports is 64 bits wide with only read access and it is used
exclusively to get IDs for zFiltering logic. There is one
instance of the id store module for each LIT and virtual
LIT. This way the memory is distributed and each in-
stance of the filtering logic have access to id store at line
rate. The other port of the id store module is 32 bits
wide with a read and write connection for the user space
access. This port is used by the management software
(cf. Section 3.2.3) to configure LIT:s on the interfaces.
One new register block is reserved for this access.

One additional register block is added for module con-
trol and debug purposes. It is used to read information
that is collected into the status registers during for-
warding operations. Status registers contain constants,

5

Figure 6: Dataflow diagram

amount of links, maximum amount of LITs and virtual
LITs per link and also the LIT length. In addition,
information about the last forwarded packet is stored
together with the result of the bit count operation, d,
TTL, and incoming port information. This block is also
used to set the maximum amount of ones allowed in a
valid zFilter.

3.2.3 Management software

For configuration and testing purposes, we have de-
veloped a specialized management software. When the
system is started, the management software is used to
retrieve information from the card and, if needed, to
configure new values on the card. The information that
the software can handle, includes the length of the LITs,
the maximum d value describing the number of LITs
used, as well as both link and virtual link information
from each of the interfaces.

Internally, the software works by creating chains of
commands that it sends in batch to the hardware, gets
the result and processes the received information. The
commands are parsed using specific, for the purpose
generated, grammar. The parsing is done using byacc
and flex tools, and is therefore easily extendable.

For testing purposes, the software can be instructed
to send customizable packets to the NetFPGA card,
and to collect information about the made forwarding
decisions. The software supports the following features:

• Selecting the outgoing interface

• Customizing the delay between transmitted pack-
ets

• Varying the sizes of packets

• Defining the Time-to-live (TTL) field in packet
header

• Defining the d value in packet header

• Defining the zFilter in the packet header

• Defining the ethernet protocol field

of Average Std. Latency/
NetFPGAs latency Dev. NetFPGA

0 16µs 1µs N/A
1 19µs 2µs 3µs
2 21µs 2µs 3µs
3 24µs 2µs 3µs

Table 1: Simple latency measurement results

4. EVALUATION
The basic functionality is tested by running simple

scripts that use control software (cf. Section 3.2.3) to
set Link IDs and to generate and send traffic. In prac-
tise, two network interfaces of the test host are con-
nected to the NetFPGA of which one is used to send
packets to the NetFPGA and the other one to receive
forwarded packets. Forwarding decisions are also fol-
lowed by tracking status registers. The results of the
tests show that the basic forwarding functions work on
the NetFPGA, also when using LITs. In addition, the
packet verification operations, counting set bits, TTL
verification, as well as ethertype checking were working
as expected.

4.1 Performance
To get some understanding of the potential speed,

we measured packet traversal times in our test environ-
ment. The first set of measurements, shown in Table
1, focused on the latency of the forwarding node with
a very low load. For measurements, we had four differ-
ent setups, with zero (direct wire) to three NetFPGAs
on the path. Packets were sent at the rate of 25 pack-
ets/second; both sending and receiving operations were
implemented directly in FreeBSD kernel.

The delay caused by the Bloom filter matching code
is 64ns (8 clock cycles), which is insignificant compared
to the measured 3µs delay of the whole NetFPGA pro-
cessing. With background traffic, the average latency
per NetFPGA was increased to 5µs.

To get some practical reference, we also compared
our implementation with the Stanford reference router.
This was quantified by comparing ICMP echo requests’
processing times with three setups: using a plain wire,

6

Path Avg. latency Std. Dev.
Plain wire 94µs 28µs
IP router 102µs 44µs
LIPSIN 96µs 28µs

Table 2: Ping through various implementations

using our implementation, and using the reference IP
router with five entries in the forwarding table. To
compensate the quite high deviation, caused by send-
ing and receiving ICMP packets and involving user level
processing, we averaged over 100 000 samples. Both
IP router implementation and our implementation were
run on the same NetFPGA hardware. The results are
shown in Table 2.

While we did not directly measure the bandwidth
due to the lack of test equipment for reliably filling up
the pipes, there are no reasons why the implementa-
tion would not operate at full bandwidth. To further
test this we did send video stream through our impl-
mentation. During the streaming we did send random
data through same NetFPGA but with different ports
at almost 1Gbs datarate. Both the stream and was for-
warded without a problem. The code is straightforward
and should be able to keep the pipeline full under all
conditions.

IP routers need increasing amount of states, which
increases latency and resource consumption, when the
size of the network increases. On the other hand, in
our implementation, the latency and resource consump-
tion for each node will remain same, independent of the
amount of nodes in the network. Because of that, the
results we got for one node should remain same even
when large amount of nodes are connected to a same
network.

4.2 Resource consumption:
To get an idea how much our implementation con-

sumes resources we did syntetize design with 4 real and
4 virtual LITs per interface. With this configuration,
the total usage of NetFPGA resources for the forward-
ing logic is 4.891 4-input LUTs out of 47.232, and 1.861
Slice Flip/Flops (FF) out of 47.232. No BRAMs are
reserved for the forwarding logic. Synthetisizer saves
BRAM blocks and uses other logic blocks to create
registers for LITs. For the whole system, the corre-
sponding numbers are 20.273 LUTs, 15.347 FFs, and
106 BRAMs. SRAM was used for the output queues in
the measured design. We also tested to use BRAMs for
output queue and the design works. However, we don’t
have measurement results from that implementation.

4.3 Forwarding table sizes:
Assuming that each forwarding node maintains d dis-

tinct forwarding tables, each containing an entry per
interface, where an entry further consists of a Link ID
and the associated output port, we can estimate the
amount of memory needed by the forwarding tables:

FTmem = d ·#Links · [size(LIT) + size(Pout)] (1)

Considering d = 8, 128 links (physical & virtual), 248-
bit LITs and 8 bits for the outport, the total memory
required would be 256Kbit, which easily fits on-chip.

Although this memory size is already small, we can
design an even more efficient forwarding table by using
a sparse representation to store just the positions of
the bits set to 1. Thereby, the size of each LIT entry is
reduced to k · log2(LIT) and the total forwarding table
requires only ≈ 48Kbit of memory, at the expense of
the decoding logic.

5. RELATED WORK
OpenFlow [11] [12] provides a platform for exper-

imental switches. It introduces simple, remote con-
trolled, flow based switches, that can be run on exist-
ing IP switches. The concept allows evaluation of new
ideas and even protocols in Openflow-enabled networks,
where the new protocols can be run on top of the IP
network. However, as high efficiency is one of our main
goals, we wanted to get rid of unnecessary logic and
decided for a native zFilter implementation.

There are not yet many publications where NetFPGA
is used, in addition to OpenFlow and publications about
implementing the NetFPGA card or reference designs.
However one technical report were available [10], about
implementing flow counter on NetFPGA. Authors of
that work used NetFPGA succesfully to demonstrate
that their idea can be implemented in practice.

In addition to NetFPGA, there are also other re-
configurable networking hardware approaches. For in-
stance, [9] describes one alternative platform. There
are also other platforms that could work for this type
of development, for example Combo cards from Liber-
outer project [1]. However, NetFPGA provides enough
speed and resources for our purposes, but Combo cards
might become a good option later on if we need higher
line speeds.

In the following we briefly discuss some work in the
area of forwarding related to our zFilter proposal.

IP multicast: Our basic communication scheme is
functionally similar to IP-based source specific multi-
cast (SSM) [6], with the IP multicast groups having
been replaced by the topic identifiers. The main dif-
ference is that we support stateless multicast for sparse
subscriber groups, with unicast being a special case of
multicast. On the contrary, IP multicast typically cre-
ates lots of state in the network if one needs to support
a large set of small multicast groups.

Networking applications of Bloom filters:

7

For locating named resources, BFs have been used
to bias random walks in P2P networks [3]. In content-
based pub/sub systems [7], summarized subscriptions
are created using BFs and used for event routing pur-
poses. Bloom filters in packet headers were proposed in
Icarus [14] to detect routing loops, in [15] for credentials-
based data path authentication, and in [13] to repre-
sent AS-level paths of multicast packets in a 800-bit
shim header, TREE BF. Moreover, the authors of [13] use
Bloom filters also to aggregate active multicast groups
inside a domain and compactly piggyback this informa-
tion in BGP updates.

6. CONCLUSIONS
Previously, we have proposed a new forwarding fabric

for multicast traffic. The idea was based on reversing
Bloom filter thinking and placing a Bloom filter into the
delivered data packets. Our analysis showed that with
reasonably small headers, comparable to those of IPv6,
we can handle the large majority of Zipf-distributed
multicast groups, up to some 20 subscribers, in realistic
metropolitan-sized topologies, without adding any state
in the network and with negligible forwarding overhead.
For the remainder of traffic, the approach provides the
ability to balance between stateless multiple sending
and stateful approaches. With the stateful approach,
we can handle dense multicast groups with a very good
forwarding efficiency. The forwarding decisions are sim-
ple, potentially energy efficient, may be parallelized in
hardware, and have appealing security properties.

To validate and test those claims, we implemented
a prototype of a forwarding node and tested its per-
formance. As described in Chapter 4, we ran some
measurements on the forwarding node and concluded
that the whole NetFPGA processing for a zFilter cre-
ates a 3µs delay. This delay could most likely be re-
duced, because the forwarding operation should take
only 64ns (8 clock cycles). Comparison with the IP
router implementation was done by using ICMP echo
requests, showing zFilter implementation being slightly
faster than IP-based forwarding, running on the same
NetFPGA platform.

Our simple implementation still lacks some of the ad-
vanced features described in [8], for example reverse
path creation and signaling. However, it should be quite
straightforward to add those features to the existing de-
sign. Also, early studies indicate that it should be pos-
sible to start adding even more advanced features, like
caching, error correction or congestion control to the
implementation.

7. REFERENCES
[1] Liberouter. http://www.liberouter.org/.
[2] B. H. Bloom. Space/time trade-offs in hash

coding with allowable errors. Commun. ACM,

13(7):422–426, 1970.
[3] A. Z. Broder and M. Mitzenmacher. Survey:

Network applications of Bloom filters: A survey.
Internet Mathematics, 1:485–509, 2004.

[4] J. Day. Patterns in Network Architecture: A
Return to Fundamentals. Prentice Hall, 2008.

[5] S. E. Deering and D. Cheriton. Multicast routing
in datagram internetworks and extended lans.
ACM Trans. on Comp. Syst., 8(2), 1990.

[6] H. Holbrook and B. Cain. Source-specific
multicast for IP. RFC 4607. Aug 2006.

[7] Z. Jerzak and C. Fetzer. Bloom filter based
routing for content-based publish/subscribe. In
DEBS ’08, pages 71–81, New York, NY, USA,
2008. ACM.

[8] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar,
and P. Nikander. LIPSIN: Line speed
publish/subscribe inter-networking. Technical
report, www.psirp.org, 2009.

[9] J. W. Lockwood, N. Naufel, J. S. Turner, and
D. E. Taylor. Reprogrammable network packet
processing on the field programmable port
extender (FPX). In Proceedings of the 2001
ACM/SIGDA ninth international symposium on
Field programmable gate arrays, 2001.

[10] J. Luo, Y. Lu, and B. Prabhakar. Prototyping
counter braids on netfpga. Technical report, 2008.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, J. Turner,
and S. Shenker. Openflow: Enabling innovation in
campus networks. In ACM SIGCOMM Computer
Communication Review, 2008.

[12] J. Naous, D. Erickson, G. A. Covington,
G. Appenzeller, and N. McKeown. Implementing
an openflow switch on the netfpga platform. In
Symposium On Architecture For Networking And
Communications Systems, 2008.

[13] S. Ratnasamy, A. Ermolinskiy, and S. Shenker.
Revisiting IP multicast. In Proceedings of ACM
SIGCOMM’06, Pisa, Italy, Sept. 2006.

[14] A. C. Snoeren. Hash-based IP traceback. In
SIGCOMM ’01, pages 3–14, New York, NY, USA,
2001. ACM.

[15] T. Wolf. A credential-based data path
architecture for assurable global networking. In
Proc. of IEEE MILCOM, Orlando, FL, Oct 2007.

[16] A. Zahemszky, A. Csaszar, P. Nikander, and
C. Esteve. Exploring the pubsub
routing/forwarding space. In International
Workshop on the Network of the Future, 2009.

8

